SELF-UNLINKED SIMPLE CLOSED CURVES

BY DAVID W. HENDERSON(1)

1. **Discussion of results.** This paper is a sequel to [4] and all the definitions and notations of [4] will be assumed. In addition, the numbering of the theorems in the present paper has been made to follow the numbering of [4].

A simple closed curve J in a space M is said to be self-unlinked, if there exist a mapping $h: J \times [0,1] \to M$ such that

- (a) $h \mid J \times \{0\} = \text{inclusion of } J \text{ in } M$,
- (b) $h(J \times \{1\}) = a$ point, and
- (c) $h(J \times (0,1]) \subset M J$.

In [4] we proved, as a partial answer to Question IV.1, that (IV.2) every self-unlinked tame simple closed curve (scc) in a 3-manifold bounds a disk. In this paper we investigate this question when we allow the scc's to be wild.

First we give some pertinent definitions, for which it will be assumed that everything is in a 3-manifold M. A complex is wild if it is not tame (see I. 11 of [4]). A 0-dimensional set is tame if, for every $\varepsilon > 0$, it can be covered by the interiors of a collection of disjoint 3-cells each of diameter less than ε . A set X is locally tame at p if p has a closed neighborhood in X which is a tame complex in M. If X is not locally tame at p then p is a wild point of X. A set is called nicely wild if the union of its wild points is a tame 0-dimensional set.

For J an arc or sec we make the following definitions, the first of which is used in [1]. The penetration index P(J,x) of J at a point $x \in J$ is the smallest cardinal number n such that there are arbitrarily small 2-spheres enclosing x and containing no more than n points of J. The penetration index P(J) of J is the least upper bound of the cardinal numbers P(J,x), for all $x \in J$. If J is nicely wild, then the nice penetration index NP(J) of J is the smallest integer n such that, for every $\varepsilon > 0$, the set of wild points of J can be covered by the interiors of a collection of disjoint 3-cells each with diameter less than ε and such that the boundary of each 3-cell intersects J in no more than n points. (The union of members of this collection is called a taming ε -set of J of index n.)

Conjecture. There is a nicely wild scc J such that $NP(J) \neq P(J)$.

Received by the editors February 20, 1965.

⁽¹⁾ This paper consists of portions of the author's Ph.D. thesis written under the supervision of R. H. Bing and while the author was a National Science Foundation Graduate Fellow. The author wishes to thank the referee for his helpful suggestions.

The author expects such an example because he knows of a nicely wild scc J which has a point x such that P(J, x) = 3; and, for any J, NP(J) is even.

In the definition of nice penetration index we may require that the 3-cells are tame, because of the following:

THEOREM V.1. Suppose every set of diameter less than ε in M lies in the interior of a convex 3-cell. (For instance, metrize M with the barycentric metric and let ε be less than 1.) If J is a nicely wild scc that is locally polyhedral mod its wild points, and if T is a taming ε -set of J of finite index, then there is a polyhedral taming ε -set T' of J with the same number of components as T, such that $BdT' \cap J$ has no more points than $BdT \cap J$ and J pierces BdT' at each point of intersection.

The principal results of this section are the following theorems.

In each J is a self-unlinked, nicely wild scc in a 3-manifold M, and we further suppose that J is locally polyhedral mod $W(W \equiv set \ of \ wild \ points \ of \ J)$.

THEOREM V. 2. J bounds an s-disk D which is locally polyhedral mod W, and $|J| \cap |\text{int } D| = \emptyset$.

THEOREM V.3. If either

- (a) NP(J) = 2, or
- (b) NP(J) is finite and J has only finitely many wild points, then there is an s-disk D' and a sequence $\{T_i\}$ such that
 - (a) for each i, T_i is a taming $\frac{1}{2}i$ -set of A of index NP(J),
- (b) $|\operatorname{Bd} D'| = J$ and $[D'|D'^{-1}(|D'|-W), \operatorname{Bd} D'|D'^{-1}(J-W)]$ is in rnp in M-W, and
 - (c) for each i, there is an s-disk D_i such that
 - (i) $(D_i, \operatorname{Bd} D_i)$ is in rnp in $(M \operatorname{int} T_i, J + \operatorname{Bd} T_i)^2$,
 - (ii) $|D_i| \supset |D_{i-1}|$, and
 - (iii) D' equals the limit of the D_i's, as maps.

THEOREM V.4. If J bounds an s-disk D' satisfying the stated conclusion of Theorem V.3, then J bounds a nonsingular disk D.

THEOREM V.5. If $NP(J) \le 4$ and J has only finitely many wild points, then NP(J) = 2.

An immediate consequence of V.4, V.5 and the characterization of tame scc's by O. G. Harrold, H. C. Griffith, and E. E. Posey in [3] is the following:

THEOREM V.6. If either

- (a) NP(J) = 2, or
- (b) $NP(J) \le 4$ and J has only finitely many wild points, then J is tame.

⁽²⁾ Bd $T_i + J$ is not a 2-manifold, but everything makes sense since $S(D_i) \subset Bd T_i$.

If J is a scc on Alexander's Horned Sphere, S, which contains all the wild points of S, then

- (a) J is a wild, nicely wild scc,
- (b) NP(J) = P(J) = 4, and
- (c) J bounds a disk.

In addition, by "tying the Fox'-Artin knot with a pointed ribbon" one can obtain a sec J such that

- (a) J is a wild, nicely wild scc with one wild point,
- (b) NP(J) = P(J) = 6, and
- (c) J bounds a disk.

Finally, by tying a convergent sequence of knots in a scc, one obtains a scc J such that

- (a) J is a nicely wild scc with one wild point,
- (b) NP(J) = P(J) = 2,
- (c) but J is wild.
- 2. **Proof of V.1.** Let C be a component of T. Theorem V.1 will follow if we produce a polyhedral 3-cell B such that $W \cap \text{int } C = W \cap \text{int } B$ (W = set of wild points of J), J pierces Bd B at each point of $J \cap \text{Bd } B$, diameter of $B < \varepsilon$, Bd $B \cap J$ has no more points than Bd $C \cap J$, and B does not intersect any other components of T.

Let δ be a positive number less than each of $(\varepsilon - (\text{diameter of } C))$, (1/3) (distance from C to T - C), and (1/3) (distance from Bd C to W). By the approximation theorems of [2] we may assume that Bd C is locally polyhedral mod $J \cap \text{Bd } C$.

Enclose each point p of Bd $C \cap J$ by a polyhedral 2-sphere S_p such that each S_p is so small that

- (a) the diameter of S_p is less than δ ,
- (b) the S_p 's are disjoint,
- (c) $S_n \cap J$ is two points at each of which J pierces S_n ,
- (d) S_p is in general position with respect to Bd C, and
- (e) there is a component K of Bd $C \sum S_p$ which separates the (Bd $C \cap S_p$)'s on Bd C.

 $\operatorname{cl}(K)$ ($\operatorname{cl} = \operatorname{closure}$) is a disk with holes and each component of $\operatorname{Bd}(\operatorname{cl}(K))$ is a scc on some S_p . For each p, only one scc of $\operatorname{cl}(K) \cap S_p$ bounds a disk in $\operatorname{Bd} C - K$ that intersects J. Therefore, since by hypothesis $C + \sum S_p$ is contained in the interior of a 3-cell, we may use linking arguments in E^3 to show that, for each p, all components but one of $\operatorname{cl}(K) \cap S_p$ bounds a disk on $S_p - J$, and that the other one bounds a polyhedral disk on S_p that intersects J at most once. We can make these disks disjoint by pushing their interiors slightly to one side. Then K plus the above disks is a polyhedral 2-sphere S in a convex 3-cell of M. Let B be the 3-cell bounded by S.

Clearly Bd $B \cap J$ has no more points than Bd $C \cap J$, diameter of $B < \varepsilon$, and B does not intersect any other components of T. Let $w \in W \cap C$ and let λ be a general

position arc from w to $M - (C + \sum S_p)$ which misses the S_p 's. [This arc is possible since the 3-cells bounded by S_p have diameter less than (1/3) (distance from Bd C to W).] Then $\lambda \cap \operatorname{Bd} B = \lambda \cap K = \lambda \cap \operatorname{Bd} C$; thus, since B + C is in the interior of a 3-cell and $w \in C$, $\lambda \cap \operatorname{Bd} B$ is an odd number of points and, therefore, $w \in B$. B is the desired 3-cell.

3. **Proof of V.2.** The proof of V.2 parallels the proof of III.4 of [4] and thus will only be sketched here.

|J|-W is an infinite 1-dimensional polyhedral graph in M. Since J is self-unlinked we may assume that J is the boundary of an s-disk D and that D is polyhedral mod J. Consider |J|-W as a subcomplex of some subdivision α of M-W.

Let Δ be the standard disk and let $\Omega \equiv D^{-1}(W)$.

Now go through the proof of III.4 replacing M by M-W, |L| by |J|-W, D by $D|(\Delta-\Omega)$, Δ by $\Delta-\Omega$, et cetera. Choose Δ' so that Bd $\Delta'\cap Bd$ $\Delta=\Omega$.

4. **Proof of V.3.** We shall assume that M is so metrized that every set of diameter no more than 1 lies in a convex 3-cell (for example, the barycentric metric).

Let D be the disk promised by V.2 and (using II.2 of [4] in M - W) suppose that $(D \mid D^{-1}(\mid D \mid -W), \operatorname{Bd} D \mid D^{-1}(J - W))$ is in rnp in M - W.

Let $\varepsilon_1 = 1$, if NP(J) = 2; otherwise let ε_1 be a positive number less than 1 and so small that, if k is the number of points in W, then there is a positive integer $n \le NP(J) \times k$ such that

(4.1) no taming ε_1 -set T of J of index $\leq NP(J)$ has fewer than k components nor does Bd $T \cap J$ have fewer than n points.

Let $\delta(\varepsilon)$ be a positive number less than $\varepsilon/3$ so small that

(4.2) if Δ' is a subdisk of Δ (the standard disk) and diam $(D(\operatorname{Bd}\Delta')) < \delta(\varepsilon)$, then diam $D(\Delta') < \varepsilon/3$.

Let $\Delta_1, \Delta_2, \dots, \Delta_i, \dots$ be an expanding sequence of proper subdisks of int Δ so that $\{Bd \Delta_i\}$ converges uniformly to $Bd \Delta$.

Choose T_1 so that

- (4.3) T_1 is a polyhedral (see VI.1) taming $\delta(\varepsilon_1)$ -set of J of index NP(J),
- (4.4) all components of T_1 intersect W,
- (4.5) if $NP(J) \neq 2$, T_1 has only k components and $Bd T_1 \cap J$ has n points (see (4.1)), and
 - $(4.6) T_1 \subset M D(\Delta_1).$

We may suppose that Bd T_1 and D are in general position so that

$$D^{-1}(\operatorname{Bd} T_1 \cap |D|)$$

is a finite collection of disjoint sec's and spanning arcs of Δ in $\Delta - \Delta_1$.

Let K be the component of $\Delta - D^{-1}(\operatorname{Bd} T_1 \cap |D|)$ containing Δ_1 . The boundary of K is a finite collection of scc's in $D^{-1}(\operatorname{Bd} T_1 \cap |D|) + \operatorname{Bd} \Delta$. Let E_1 be the smallest disk in Δ containing K. (Note that $\operatorname{Bd} K \cap \operatorname{Bd} \Delta \subset \operatorname{Bd} E_1 \subset \operatorname{Bd} K$.)

If A is a member of \mathfrak{A} (those scc's of $D^{-1}(\operatorname{Bd} T_1) \cap \operatorname{int} E_1$ which can be shrunk to a point in $\operatorname{Bd} T_1 - J$) and E_a is the disk that A bounds in E_1 , then we can replace $D(E_a)$ by the singular disk which D(A) bounds on $\operatorname{Bd} T_1 - J$. By pushing this disk slightly to one side of $\operatorname{Bd} T_1$ we can remove a component of $D^{-1}(\operatorname{Bd} T_1 \cap D)$. If we apply the above "disk-switching and pushing" only to outermost (in E_1) members of $\mathfrak A$ then no point of Δ will have its image changed more than once.

Thus, by applying the "disk-switching and pushing" to each outermost (in E) member of \mathfrak{A} and then II.2 of [4] we obtain an s-disk D_1 such that

- $(4.7) D_1' \Delta_1 + (\Delta \operatorname{int} E_1) + \operatorname{Bd} \Delta = D \Delta_1 + (\Delta \operatorname{int} E_1) + \operatorname{Bd} \Delta,$
- (4.8) $D_1^{\prime -1}(\operatorname{Bd} T_1 \cap |D_1^{\prime}|) \cap \operatorname{int} E_1$ is a finite collection of scc's whose images under D_1^{\prime} cannot be shrunk to a point on $\operatorname{Bd} T_1 J_2$, and
 - (4.9) $(D'_1 W, \operatorname{Bd} D'_1 W)$ is in rnp in M W.

Let \mathfrak{B} be the collection of all components (scc's) of $D_1^{\prime -1}(\operatorname{Bd} T_1 \cap |D_1^{\prime}|) \cap \operatorname{int} E_1$. If $\mathfrak{B} \neq \emptyset$, let A be an innermost (in E_1) scc of \mathfrak{B} . A bounds a disk $E_a \subset E_1$ and $D_1^{\prime}(E_a) \subset |D_1^{\prime}| - \operatorname{int} T_1$, or $T_1 - J$. We shall treat these two cases separately.

If $D_1'(E_a) \subset T_1 - J$, then, since $D_1'(A)$ cannot be shrunk on $\operatorname{Bd} T_1 - J$, we can use the loop theorem to get a scc J_a such that J_a bounds a disk D_a in $T_1 - J$ but each of the two disks which J_a bounds on $\operatorname{Bd} T_1$ contain points of $J \cap \operatorname{Bd} T_1$. Thus D_a separates $J \cap C$, where C is the component of T_1 containing J_a . If we "cut" C apart along D_a (this cut could be accomplished by removing from C the interior of a regular neighborhood of D_a that misses J), we obtain a new taming δ -set T' of J.

If NP(J) = 2, then $J \cap BdC$ is two points and J intersects the boundary of each part of the "cut apart" C in only one point. But a sec that intersects a 2-sphere only once is contained wholly in one complementary domain or the other; therefore, $J \cap C$ is two points and C contains no points of W. This is a contradiction of (4.4).

If $NP(J) \neq 2$, then T' is a taming $\delta(\varepsilon_1)$ -set of index NP(J) and with k+1 components. But since W has only k points one of the components, C' say, of T' does not intersect W. But then T' - C' is a taming $\delta(\varepsilon_1)$ -set of index NP(J) and with k components such that $Bd(T' - C') \cap J$ has fewer points than $Bd T \cap J$ which contradicts (4.1), (4.3), and (4.5).

Thus $D'_1(E_a)$ is not contained in $T_1 - J$.

If $D_1'(E_a) \subset |D_1'| - (\operatorname{int} T_1 + J)$, then by the loop theorem there is a real disk E_a such that int E_a is contained in $M - (T_1 + J)$. Also each of the disks E_a' and E_a'' which $\operatorname{Bd} E_a$ bounds on $\operatorname{Bd} T_1$ contains points of $J \cap \operatorname{Bd} T_1$. Because of (4.2) and (4.3), the diameter of E_a is less than $\varepsilon_1/3$. Thus one of $E_a + E_a'$ or $E_a + E_a''$, say $E_a + E_a'$, is a 2-sphere of diameter less than $2\varepsilon_1/3$ not containing C (the component of T_1 containing $\operatorname{Bd} E_a$) in its small complementary domain. Thus $E_a + E_a'$ lies in a convex 3-ball of M (see note at beginning of §4) and thus bounds a 3-cell B of diameter less than $2\varepsilon_1/3$.

C+B is a 3-cell and $J \cap \operatorname{Bd}(C+B) = J \cap E_a^n$ has fewer points than $J \cap \operatorname{Bd} C$. Thus, if NP(J) = 2, $J \cap \operatorname{Bd}(C+B)$ is one point and $C \subset C+B$ does not intersect W, which contradicts (4.4). If $NP(J) \neq 2$, then $\operatorname{Bd}(T_1+B) \cap J$ has fewer points than $\operatorname{Bd}T_1 \cap J$ which contradicts (4.1), (4.2), (4.3), and (4.5).

Thus we conclude that \mathfrak{B} is empty and that $D_1 = D_1' \mid E_1$ is an s-disk satisfying (c) (i) of V.3, if D_1' is substituted for D'. With the same substitution T_1 and D_1' satisfy (a) and (b) of V.3.

We now repeat the above process letting ε_2 be a positive number less than ε_1 and $\frac{1}{2}$ and with the following substitutions: ε_2 for ε_1 , D_1' for D, D_2' for D_1' , E_2 for E_1 , $\Delta_2 + E_1$ for Δ_1 , D_2 for D_1 , and T_2 for T_1 . We can choose T_2 to satisfy $T_2 \subset M - D_1'(\Delta_2 + E_1)$ since $D_1'^{-1}(W) = D^{-1}(W) \subset Bd \Delta - E_1$. Thus, T_1, T_2, D_1, D_2, D_2' satisfy (a), (b), and (c) (i) and (ii) of V.3 with D' replaced by D_2' .

We repeat the process at the *i*th stage after letting ε_i be a positive number less than ε_{i-1} and $1/2^{i-1}$ and then substituting ε_i for ε_1 , D'_{i-1} for D, D'_i for D'_1 , E_i for E_1 , $\Delta_i + E_{i-1}$ for Δ_1 , D_i for D_1 , and T_i for T_1 . Thus for each i, T_1, T_2, \dots, T_i , D_1, D_2, \dots, D_i , D'_i satisfy (a), (b), and (c) (i) and (ii) of V.3 with D' replaced by D'_i . By (4.7)

$$D_i' | \Delta_i + E_{i-1} + (\Delta - \operatorname{int} E_i) + \operatorname{Bd} \Delta = D_{i-1} | \Delta_i + E_{i-1} + (\Delta - \operatorname{int} E_i) + \operatorname{Bd} \Delta$$

and, since $E_i \supset \Delta_i + E_{i-1}$ and $\{\operatorname{Bd}\Delta_i\}$ converges to $\operatorname{Bd}\Delta$, every $p \in \operatorname{int}\Delta$ is in $\Delta_i + E_{i-1}$ for some i and thus $D'_j(p) = D'_{i-1}(p)$, for all $j \geq i$. In addition, for each i, $D'_i \mid \operatorname{Bd}\Delta = D \mid \operatorname{Bd}\Delta$. Also the diameter of each component of $\Delta - E_i$ approaches zero as i approaches infinity and, for all p, the distance between $D_i(p)$ and $D'_{i+1}(p)$ is less than $\varepsilon_{i+1} < 1/2^i$. Thus $D' = \lim D'_i = \lim D_i$ is the s-disk desired for V.3.

5. **Proof of V.4.** Let D', $\{D_i\}$, $\{T_i\}$ be as given in the conclusion to V.3. Suppose α is a subdivision of M-W so that $|D'|-W+\sum T_i$ is a subcomplex of $\alpha(M-W)$. For $i=1,2,\cdots$, Theorem III.5 [applied to $(M-\operatorname{int} T_i,\operatorname{Bd} T_i+J)$] (see previous footnote) shows that there is an s-disk D'_i such that $(D'_i,\operatorname{Bd} D'_i)$ is a conservative δ_i -alteration of $(D_i,\operatorname{Bd} D_i)$, and $|D'_i|$ is related to $|D_i|$ as |D'| is related to $|D^*|$ in the Addendum. We choose δ_i and n(i) so that

$$(\delta_i$$
-neighborhood of $S(D_i')) \subset st[S(D_i'), \alpha^{n(i)}(M - int T_i)] \subset M - J.$

Thus, since $S(D'_i)$ contains, if anything, only crossing pinch points, $S(D'_i)$ is empty because $|\inf D'_i| \subset M - \inf T_i$. We also assume that each $|D'_i|$ is in general position with respect to each Bd T_i .

For each *i* there is a positive integer k(i) such that $|D_j| \supset |D'| \cap (M - \text{int } T_i)$ for all $j \geq k(i)$. Let $U_i = \text{st}[S(D_i'), \alpha^{n(i)}(M - \text{int } T_i)]$. Then, for all *i* and for all $j \geq k(i)$ (a) $(|D_i'| - (U_i + \text{int } T_i)) = (|D'| - (U_i + \text{int } T_i))$, and

(b) $|D'_j| - \operatorname{int} T_i$ is related to $|D'| - \operatorname{int} T_i$ as |D'| is related to $|D^*|$ in the Addendum.

There are only finitely many ways of putting things in U_i so that the Addendum is satisfied. Thus for some strictly increasing sequence of positive integers $\{n(1,i)\}$, $n(1,1) \ge k(1)$, the pairs $[U_1, |D_{n(1,i)}| \cap U_1]$ are all pwl homeomorphic for $i = 1, 2, 3, \cdots$. Likewise there is a subsequence of $\{n(1,i)\}$ which we call $\{n(2,i)\}$ such that $n(2,i) \ge k(n(1,1))$ and, for $i = 1, 2, 3, \cdots$, the pairs

$$[U_{n(1,1)}, D'_{n(2,i)}] \cap U_{n(1,1)}]$$

are all pwl homeomorphic. In this way we get a sequence of sequences $\{n(1,i)\}$, $\{n(2,i)\}$, $\{n(3,i)\}$, \cdots such that $\{n(j,i)\}_{i=1}^{\infty}$ is a subsequence of $\{n(k,i)\}_{i=1}^{\infty}$ for all k < j, and, for each fixed k, the pairs $[U_{n(k,1)}, |D'_{n(k+1,i)}| \cap U_{n(k,1)}]$ are pwl homeomorphic for $i = 1, 2, \cdots$.

Set m(i) = n(i, 1), for $i = 1, 2, \cdots$. By moving things slightly in $\sum U_{m(i)}$ we can suppose that

$$|D'_{m(i)}| - \operatorname{int} T_{m(j)} = |D'_{m(k)}| - \operatorname{int} T_{m(j)}, \text{ for all } i, k > j.$$

The (nonsingular) s-disks $D'_{m(i)}$ are not nice enough because their limit might not be a disk. However, we shall choose certain subdisks and alter them to produce a nonsingular disk with boundary J.

Let E_1 be a sub-s-disk of $D'_{m(1)}$ such that

$$(5.2)_1 J + \operatorname{Bd} T_{m(1)} \operatorname{contains} | \operatorname{Bd} E_1 |.$$

Let E_2 be a sub-s-disk of $D'_{m(2)}$ such that

$$(5.2)_2 J \cap |E_2| \subset |\operatorname{Bd} E_2| \subset J + \operatorname{Bd} T_{m(1)} \text{ and } |\operatorname{Bd} E_1| \subset |E_2|.$$

By induction, pick E_n to be a sub-s-disk of $D'_{m(n)}$ such that

$$(5.2)_n J \cap |E_n| \subset |\operatorname{Bd} E_n| \subset J + \operatorname{Bd} T_{m(n-1)} \text{ and } |\operatorname{Bd} E_{n-1}| \subset |E_n|.$$

PROPOSITION V.7. $J \subset \liminf\{|E_i|\}$.

Proof. By (5.2), $J \cap |E_i| \subset J \cap |E_{i+1}|$. Therefore, we need only show that every point of J - W belongs to some $|E_i|$. Let q be any point of $J \cap |E_1|$ and let $p \in J - W$. For some positive integer r, $p \in M - T_{m(r)}$. Now suppose that $p \notin |E_{r+j}|$, for every $j \ge 1$. Then, for each $j \ge 1$, $T_{m(r+j-1)} \cap D'_{m(r+j)}$ separates p from q in $D'_{m(r+j)}$ and, because a disk is unicoherent, one component of $T_{m(r+j-1)} \cap D'_{m(r+j)}$ separates p from q. But $(p+q) \notin T_{m(r+j-1)}$ and each component of $T_{m(r+j-1)}$ has diameter less than $1/2^{m(r+j-1)}$. We conclude that, for every ε , there is a subset R of J which is of diameter less than ε and which is within ε of W, such that R separates p from q. But, since neither p nor q belong to W, some point of W must separate p from q in J. This is a contradiction since no scc is separated by a single point. This proves V.7.

PROPOSITION V.8. For every positive integer r, there is a positive integer s(r), such that, for all $i, j \ge s(r)$,

$$|E_j| - \operatorname{int} T_{m(r)} = |E_i| - \operatorname{int} T_{m(r)}.$$

Proof. $D'_{m(r+1)}$ — int $T_{m(r)}$ has finitely many components and if, for some i, $|E_i|$ intersects one of these components, then it contains the whole component. For each component C of $(D'_{m(r+1)} - \operatorname{int} T_{m(r)})$, let n(C) be the least integer such that $C \subset |E_{n(C)}|$ and set n(C) = 0 if C intersects no $|E_i|$. The S desired by V.8 is the maximum of the n(C)'s over all components C of $D'_{m(r+1)} - \operatorname{int} T_{m(r)}$.

Define $s^n(r) = s(s^{n-1}(r))$.

We now change the E_i 's into an expanding sequence of disks in a countable number of steps.

Step 1. Let F_1 be the singular s-disk gotten by removing from $E_{s(1)}$ the interior of Bd E_1 in $E_{s(1)}$ (see (5.2)) and replacing it by E_1 . Formally, let Δ' be the subdisk of Δ bounded by $E_{s(1)}^{-1}(\operatorname{Bd} E_1)$; and let f be a homeomorphism of Δ onto Δ' such that

$$(E_{s(1)}|\operatorname{Bd}\Delta')\circ (f|\operatorname{Bd}\Delta)=E_1|\operatorname{Bd}\Delta.$$

Then F_1 equals $E_{s(1)}$ on Δ – int Δ' and $E_1 \circ f^{-1}$ on Δ' . The singularities $S(F_1)$ are contained in $M - T_{m(1)}$. Let $\delta_1 = \frac{1}{2}$ (distance from $S(F_1)$ to $T_{m(1)}$) and apply IV.3 of [4] to get a nonsingular s-disk F'_1 which is a conservative δ_1 -alteration of F_1 such that $\operatorname{Bd} F'_1 = \operatorname{Bd} F_1 = \operatorname{Bd} E_{s(1)}$. Note that $F'_1 \subset M - T'_{m(s(1))}$.

Step 2. Let F_2 be the singular disk gotten by removing from $E_{s^2(1)}$ the interior of $\operatorname{Bd} E_{s(1)}$ in $E_{s^2(1)}$ and replacing it by F'_1 . Since

$$|E_{s(1)}| - \operatorname{int} T_{m(1)} = |E_{s^2(1)}| - \operatorname{int} T_{m(1)}, \quad |F_2| - |F_1'| \subset \operatorname{int} T_{m(1)}.$$

Thus, because

$$F_1' \subset M - T_{m(s(1))}, \quad S(F_2) \subset \operatorname{int} T_{m(1)} - T_{m(s(1))}.$$

Let $\delta_2 = \frac{1}{2}$ (distance from $S(F_2)$ to $T_{m(s(1))}$) and apply IV.3 of [4] to get a non-singular s-disk F_2' which is a conservative δ_2 -alteration of F_2 . F_2' has the following properties:

$$(5.3)_2$$
 E_1 is a sub-s-disk of F'_2 .

(5.4)₂
$$\operatorname{Bd} F_2' = \operatorname{Bd} F_2 = \operatorname{Bd} E_{s^2(1)}.$$

$$(5.5)_2 F_2' \subset M - T_{m(s^2(1))}.$$

$$(5.6)_2 F_1' - T_{m(1)} = F_2' - T_{m(1)}.$$

Step n $(n=3,4,\cdots)$. Let F_n be the singular s-disk gotten by removing from $E_{s^n(1)}$ the interior of $\operatorname{Bd} E_{s^{n-1}(1)}$ in $E_{s^n(1)}$ and replacing it by F'_{n-1} (see (5.2) and (5.4)_{n-1}). By V.8, $|F_n| - |F_{n-1}| \subset \operatorname{int} T_{m(s^{n-2}(1))}$. Thus, by (5.5)_{n-1},

$$S(F_n) \subset \operatorname{int} T_{m(s^{n-2}(1))} - T_{m(s^{n-1}(1))}$$

Let $\delta_n = \frac{1}{2}$ (distance from $S(F_n)$ to $T_{m(s^{n-1}(1))}$) and apply IV.3 of [4] to get a non-singular s-disk F' which is a conservative δ_n -alteration of F_n . F'_n has the following properties.

$$(5.3)_n$$
 F'_{n-2} is a sub-s-disk of F'_n .

$$(5.4)_n \operatorname{Bd} F' = \operatorname{Bd} E_{s^n(1)}.$$

$$(5.5)_n F_n' \subset M - T_{m(s^n(1))}.$$

$$(5.6)_n F'_{n-1} - T_{m(s^{n-1}(1))} = F'_n - T_{m(s^{n-1}(1))}.$$

Define $E_1 \equiv F_0'$.

We now use the F_i 's to construct a nonsingular s-disk D whose boundary is J.

PROPOSITION V.9. For all $m \ge n \ge 2$ and for all onto homeomorphisms $g: \Delta \to \to \Delta$, there is an onto homeomorphism $h_n^m(g): \Delta \to \to \Delta$, such that

$$(F'_m \circ h_n^m(g)) | (F'_n \circ g)^{-1} | F'_{n-2} | = (F'_n \circ g) | (F'_n \circ g)^{-1} | F'_{n-2} |.$$

Proof. There is essentially only one way of extending a disk Δ' to a larger disk Δ when $\Delta' \cap \operatorname{Bd} \Delta$ is given. [That is to say, given $\Delta' \subset \Delta_1$ and $\Delta' \subset \Delta_2$ such that $\Delta' \cap \operatorname{Bd} \Delta_1 = \Delta' \cap \operatorname{Bd} \Delta_2$, there is a homeomorphism of Δ_1 onto Δ_2 fixed on Δ' .] From (5.2) and (5.4) we conclude that, for $m \ge n$, $F'_m^{-1}(|\operatorname{Bd} F'_{n-2}|) \cap \operatorname{Bd} \Delta = F'_m^{-1}(|\operatorname{Bd} F'_{n-2}| \cap J)$. Proposition V.9 now follows.

Using V.9, define

$$F''_0 \equiv F'_0 = E_1,$$

$$F''_1 \equiv F'_1,$$

$$F''_2 \equiv F'_2,$$

and, for $n = 3, 4, 5, \dots$,

$$F''_n = F'_n \circ h_{n-1}^n (F'_{n-1}^{-1} \circ F''_{n-1}).$$

The reader can check that F_n'' , $n=2,3,\cdots$, satisfies $(5.3)_n$ – $(5.6)_n$ with all primes (') replaced by double-primes ("). In addition, if we define $\Delta_i = F_{i+2}''^{-1}(|F_i''|)$,

$$(5.7)_n for all $m \ge n + 2 \ge 4, \quad F''_m \mid \Delta_n = F''_{n+2} \mid \Delta_n.$$$

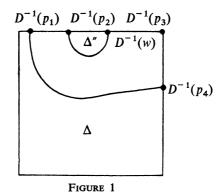
This follows from V.9.

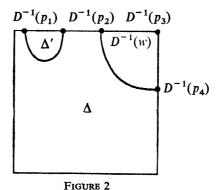
Define $D \mid \Delta_i \equiv F_{i+2}'' \mid \Delta_i$. By (5.7), D is a 1-1, continuous map of $\sum_{i=1}^{\infty} \Delta_i$ into M. Since each component of T_i is of diameter less than $1/2^i$, (5.5) and (5.6) show that D can be extended to a 1-1, continuous map (and thus, an embedding) of Δ into M. It follows from V.7 that $J \subset D(\Delta)$ and from (5.2) and (5.4) that $J = |\operatorname{Bd} D|$.

This completes the proof of V.6.

6. **Proof of V.5.** Let D be the nonsingular s-disk promised by Theorem V.4 and let ε_1 , $\delta(\varepsilon_1')$, and T_1 be as in (4.1)–(4.5) with the additional requirement that T_1 be a γ -set, where γ is less than $\frac{1}{2}\delta(\varepsilon_1)$ and so small that if p and q are points of J within γ of each other then one of the components of J-(p+q) has diameter less than $\frac{1}{2}\delta(\varepsilon_1)$. Assume that D is polyhedral mod W and that D and D and D are in general position.

Let C be a component of T_1 such that $\operatorname{Bd} C \cap J$ has four points. Call these four points p_1, p_2, p_3 , and p_4 . $D^{-1}(\operatorname{Bd} C \cap |D|)$ is a finite collection of scc's and spanning arcs in Δ . Since the only possible end points for $D^{-1}(\operatorname{Bd} C \cap |D|)$ are $D^{-1}(\operatorname{Bd} C \cap J)$, $D^{-1}(\operatorname{Bd} C \cap |D|)$ has two spanning arcs which are situated as in Figure 1 or Figure 2. Note that $W \cap C$ is one point, which we call w; and





 $D^{-1}(w)$ is between $D^{-1}(p_1)$ and $D^{-1}(p_2)$, or $D^{-1}(p_3)$ and $D^{-1}(p_4)$. We suppose the latter.

We shall look at the two cases depicted by Figure 1 and Figure 2.

Case depicted by Figure 1. The image of a neighborhood of $\operatorname{Bd}\Delta''$ is in $M - \operatorname{int} T_1$, and $(D | \Delta'')^{-1}(\operatorname{Bd} C \cap |(D | \Delta'')|)$ is a finite collection of scc's. By

using arguments almost identical to those employed in the proof of V.3, we can remove the scc's that bound disks on Bd C - J and then show that no more are left. Thus we suppose that D has been altered so that

(6.1)
$$D \mid \Delta''$$
 is nonsingular, $\operatorname{int}(D \mid \Delta'') \subset M - T_i$, and $\operatorname{Bd}(D \mid \Delta'') \subset \operatorname{Bd} C + (\text{small part of } J \text{ between } p_2 \text{ and } p_3).$

By our choice of γ , the diameter of $|\operatorname{Bd}(D|\Delta'')|$ is less than $\delta(\varepsilon_1)$ and thus the diameter of $|(D|\Delta'')|$ is less than $\varepsilon_1/3$. (See (4.2).) By thickening up $|(D|\Delta'')|$ we obtain a new taming ε_1 -set T' of J of index ≤ 4 and such that $J \cap \operatorname{Bd} T'$ has two fewer points than $J \cap \operatorname{Bd} T_1$. This contradicts (4.1) and (4.5).

Case depicted by Figure 2. By repetition of previous arguments we can alter D on int Δ' to remove the components of intersection with Bd C, and thus obtain a nonsingular s-disk D', such that $|\inf D'| \subset \inf C$ and $Bd D' \subset Bd C + (\text{component of } J \cap C \text{ between } p_1 \text{ and } p_2)$. By splitting C apart along |D'| we can obtain a new taming $\delta(\varepsilon_1)$ -set T' of J of index ≤ 4 and such that $J \cap Bd T'$ has two fewer points than $J \cap Bd T_1$. This again is a contradiction.

Thus V.5 is proven.

REFERENCES

- 1. B. J. Ball, *Penetration indices and applications*, Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, 1962.
- 2. R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. 61 (1957), 456-483.
- 3. O. G. Harrold, H. C. Griffith, and E. E. Posey, A characterization of tame curves in 3-space, Trans. Amer. Math. Soc. 79 (1955), 12-35.
- 4. D. W. Henderson, Extensions of Dehn's Lemma and the Loop Theorem, Trans. Amer. Math. Soc. 120 (1965), 448-469.

University of Wisconsin,
Madison, Wisconsin
Institute for Advanced Study,
Princeton, New Jersey